This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266971 Expansion of Product_{k>=1} 1 / (1 + k*x^k)^k. 7
 1, -1, -3, -6, 2, 9, 41, 46, 91, -110, -210, -713, -574, -1152, 792, 1066, 9317, 8553, 21302, 745, 8051, -82940, -76750, -276022, -82369, -404100, 381095, -38110, 2427272, 1126260, 6527840, 198507, 9754305, -14320206, 2879362, -60271740, -5154261, -143468194 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd. This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..6224 (terms 0..1000 from Vaclav Kotesovec) FORMULA a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where c = 50.5838262902886367070621... if mod(n,3)=0, c = 50.5827771239052189170531... if mod(n,3)=1, c = 50.5832885870455104598393... if mod(n,3)=2. a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017 MATHEMATICA nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] PROG (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017 (Ruby) def s(f_ary, g_ary, n)   s = 0   (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}   s end def A(f_ary, g_ary, n)   ary = [1]   a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}   (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}   ary end def A266971(n)   A((0..n).to_a, (0..n).map{|i| -i}, n) end p A266971(50) # Seiichi Manyama, Nov 18 2017 CROSSREFS Cf. A022629, A022693, A266891, A266941, A266964. Sequence in context: A205001 A154204 A309609 * A257106 A210187 A210189 Adjacent sequences:  A266968 A266969 A266970 * A266972 A266973 A266974 KEYWORD sign AUTHOR Vaclav Kotesovec, Jan 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)