This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266964 Expansion of Product_{k>=1} (1 - k*x^k)^k. 82
 1, -1, -4, -5, -3, 23, 44, 104, 70, -93, -465, -1155, -1882, -1904, 804, 6195, 18755, 33296, 47327, 35198, -28493, -176199, -453792, -805453, -1126396, -1028297, -18994, 2946491, 8248080, 16444480, 25436984, 30736635, 22263981, -16098311, -102681575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Vaclav Kotesovec) FORMULA a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017 From Seiichi Manyama, Nov 14 2017: (Start) A generalized Euler transform. Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>=0, by Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = a(0) + a(1)*x + a(2)*x^2 + ... Since Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = exp(Sum_{n>0} (Sum_{d|n} d*f(d)*g(d)^(n/d))*x^n/n), we see that a(n) is given explicitly by a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*f(d)*g(d)^(n/d). Examples: 1. If we set g(n) = 1, we get the usual Euler transform. 2. If we set f(n) = -h(n) and g(n) = -1, we get the weighout transform (cf. A026007). 3. If we set f(n) = -n and g(n) = n, we get this sequence. (End) MAPLE seq(coeff(series(mul((1-k*x^k)^k, k=1..n), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 31 2018 MATHEMATICA nmax = 40; CoefficientList[Series[Product[(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] (* More efficient program: *) nmax = 40; s = 1-x; Do[s*=Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax] PROG (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017 (Ruby) def s(f_ary, g_ary, n)   s = 0   (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}   s end def A(f_ary, g_ary, n)   ary = [1]   a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}   (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}   ary end def A266964(n)   A((0..n).map{|i| -i}, (0..n).to_a, n) end p A266964(50) # Seiichi Manyama, Nov 18 2017 (MAGMA) m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-k*q^k)^k: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018 CROSSREFS Cf. A022661, A026007, A266891, A266941, A266971, A296601. Sequence in context: A019836 A020503 A307484 * A258197 A255698 A290558 Adjacent sequences:  A266961 A266962 A266963 * A266965 A266966 A266967 KEYWORD sign AUTHOR Vaclav Kotesovec, Jan 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)