OFFSET
0,30
COMMENTS
Row sums give A000041.
The weighted sum is given by the sum of the rows where row i is weighted by i.
Note that the first part has weight 0. This statistic (zero-based weighted sum) is ranked by A359677, reverse A359674. Also the number of partitions of n with one-based weighted sum n + k. - Gus Wiseman, Jan 10 2023
LINKS
Alois P. Heinz, Rows n = 0..50, flattened
FindStat - Combinatorial Statistic Finder, Weighted size of a partition
FORMULA
From Alois P. Heinz, Jan 20 2023: (Start)
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1,1;
1,1,0,1;
1,1,1,1,0,0,1;
1,1,1,1,1,0,1,0,0,0,1;
1,1,1,2,1,0,2,1,0,0,1,0,0,0,0,1;
1,1,1,2,1,1,2,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1;
1,1,1,2,2,1,2,2,1,1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1;
...
The a(15,31) = 5 partitions of 15 with weighted sum 31 are: (6,2,2,1,1,1,1,1), (5,4,1,1,1,1,1,1), (5,2,2,2,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1). These are also the partitions of 15 with one-based weighted sum 46. - Gus Wiseman, Jan 09 2023
MAPLE
b:= proc(n, i, w) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, w)+
`if`(i>n, 0, x^(w*i)*b(n-i, i, w+1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 01 2015
MATHEMATICA
b[n_, i_, w_] := b[n, i, w] = Expand[If[n == 0, 1, If[i < 1, 0, b[n, i - 1, w] + If[i > n, 0, x^(w*i)*b[n - i, i, w + 1]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n], Total[Accumulate[Reverse[#]]]==k&]], {n, 0, 8}, {k, n, n*(n+1)/2}] (* Gus Wiseman, Jan 09 2023 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Nov 01 2015
STATUS
approved