This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093073 Expansion of eta(q)*eta(q^2)/(eta(q^9)eta(q^18)) in powers of q. 1
 1, -1, -2, 1, 0, 2, 1, 0, 0, -1, 0, -4, -1, 0, 4, 0, 0, 2, 1, 0, -8, 2, 0, 8, 0, 0, 2, -2, 0, -16, -3, 0, 16, -1, 0, 4, 4, 0, -28, 4, 0, 28, 1, 0, 8, -4, 0, -48, -6, 0, 46, -1, 0, 12, 5, 0, -80, 8, 0, 76, 1, 0, 20, -8, 0, -126, -10, 0, 120, -2, 0, 32, 11, 0, -196, 14, 0, 184, 4, 0, 48 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,3 COMMENTS Euler transform of period 18 sequence [ -1,-2,-1,-2,-1,-2,-1,-2,0,-2,-1,-2,-1,-2,-1,-2,-1,...]. G.f. A(x)=y satisfies 0=f(A(x),A(x^2)) where f(u,v)=u^4+v^4 -uv((u+v)^2+9(u+v)+uv(u+v+4)). a(3n-1)=A062242(n), a(3n+1)=-2*A092848(n). a(3n)=0, if n>0. LINKS PROG (PARI) a(n)=if(n<-1, 0, n++; X=x+x*O(x^n); polcoeff(eta(X)*eta(X^2)/eta(X^9)/eta(X^18), n)) CROSSREFS Essentially same as A058531. Sequence in context: A067613 A178235 A058531 * A156319 A190893 A030204 Adjacent sequences:  A093070 A093071 A093072 * A093074 A093075 A093076 KEYWORD sign AUTHOR Michael Somos, Mar 17 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .