login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067613 Triangular table of coefficients of the Hermite polynomials, divided by 2^floor(n/2). 0
1, 0, -2, -1, 0, 2, 0, 6, 0, -4, 3, 0, -12, 0, 4, 0, -30, 0, 40, 0, -8, -15, 0, 90, 0, -60, 0, 8, 0, 210, 0, -420, 0, 168, 0, -16, 105, 0, -840, 0, 840, 0, -224, 0, 16, 0, -1890, 0, 5040, 0, -3024, 0, 576, 0, -32, -945, 0, 9450, 0, -12600, 0, 5040, 0, -720, 0, 32, 0, 20790, 0, -69300, 0, 55440, 0, -15840, 0, 1760, 0, -64 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Series development of exp(-(c+x)^2) at x=0 gives a Hermite polynomial in c as coefficient for x^k.

LINKS

Table of n, a(n) for n=0..77.

FORMULA

HermiteH[n, c](-1)^n / 2^Floor[n/2]

MATHEMATICA

Table[ CoefficientList[ HermiteH[ n, c ], c ](-1)^n/2^Floor[ n/2 ], {n, 0, 12} ] (* or, equivalently *) a1=CoefficientList[ Series[ Exp[ c^2 ]Exp[ -(c+x)^2 ], {x, 0, 12} ], x ]; a2=(CoefficientList[ #, c ]&/@ a1 ) Range[ 0, 12 ]! 2^-Floor[ Range[ 0, 12 ]/2 ]

CROSSREFS

Cf. A060821.

Sequence in context: A097567 A022881 A093201 * A264034 A058531 A093073

Adjacent sequences:  A067610 A067611 A067612 * A067614 A067615 A067616

KEYWORD

easy,sign,tabl

AUTHOR

Wouter Meeussen, Feb 01 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 26 02:24 EDT 2017. Contains 288749 sequences.