login
A067613
Triangular table of coefficients of the Hermite polynomials, divided by 2^floor(n/2).
1
1, 0, -2, -1, 0, 2, 0, 6, 0, -4, 3, 0, -12, 0, 4, 0, -30, 0, 40, 0, -8, -15, 0, 90, 0, -60, 0, 8, 0, 210, 0, -420, 0, 168, 0, -16, 105, 0, -840, 0, 840, 0, -224, 0, 16, 0, -1890, 0, 5040, 0, -3024, 0, 576, 0, -32, -945, 0, 9450, 0, -12600, 0, 5040, 0, -720, 0, 32, 0, 20790, 0, -69300, 0, 55440, 0, -15840, 0, 1760, 0, -64
OFFSET
0,3
COMMENTS
Series development of exp(-(c+x)^2) at x=0 gives a Hermite polynomial in c as coefficient for x^k.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010(rows 0 to 140, flattened)
FORMULA
HermiteH[n, c](-1)^n / 2^Floor[n/2]
MAPLE
S:=series(exp(-2*c*x-x^2), x, 13):
seq(seq(coeff(coeff(S, x, n)*n!/2^floor(n/2), c, j), j=0..n), n=0..12); # Robert Israel, Dec 07 2018
MATHEMATICA
Table[ CoefficientList[ HermiteH[ n, c ], c ](-1)^n/2^Floor[ n/2 ], {n, 0, 12} ] (* or, equivalently *) a1=CoefficientList[ Series[ Exp[ c^2 ]Exp[ -(c+x)^2 ], {x, 0, 12} ], x ]; a2=(CoefficientList[ #, c ]&/@ a1 ) Range[ 0, 12 ]! 2^-Floor[ Range[ 0, 12 ]/2 ]
PROG
(PARI) row(n) = Vecrev((-1)^n*polhermite(n)/2^floor(n/2)) \\ Michel Marcus, Dec 07 2018
CROSSREFS
Cf. A060821.
Sequence in context: A022881 A328748 A093201 * A264034 A058531 A093073
KEYWORD
easy,sign,tabl,look
AUTHOR
Wouter Meeussen, Feb 01 2002
STATUS
approved