login
A067614
a(n) is the second partial quotient in the simple continued fraction for sqrt(prime(n)).
1
2, 1, 4, 1, 3, 1, 8, 2, 1, 2, 1, 12, 2, 1, 1, 3, 1, 1, 5, 2, 1, 1, 9, 2, 1, 20, 6, 2, 2, 1, 3, 2, 1, 1, 4, 3, 1, 1, 1, 6, 2, 2, 1, 1, 28, 9, 1, 1, 15, 7, 3, 2, 1, 1, 32, 4, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 40, 4, 2, 1, 1, 1, 1, 21, 5, 2, 2, 1, 1, 1, 14, 6, 2, 2, 1, 1, 1
OFFSET
1,1
FORMULA
a(n) = floor(1/(sqrt(prime(n))-floor(sqrt(prime(n))))), where prime(n) is the n-th prime.
a(n) = floor(2*s/r) where s = floor(sqrt(p)) = A000006(n), r = p - s^2 = A056892(n), and p = prime(n). - Kevin Ryde, May 06 2022
EXAMPLE
For n=8, prime(n)=19, floor(sqrt(19))=4 and 1/(sqrt(19)-4) = 2.786..., so a(8)=2.
MATHEMATICA
a[n_] := Floor[1/(Sqrt[Prime[n]]-Floor[Sqrt[Prime[n]]])]
PROG
(PARI) a(n) = my(r); sqrtint(prime(n), &r)<<1 \ r; \\ Kevin Ryde, May 06 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Feb 01 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 14 2002
STATUS
approved