login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263882 Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n). 4
1, 5, 35, 2915, 30771, 4037381, 48954659, 7782070631, 17875901604959, 242158352370063, 637739431824553035, 126348774791431208099, 1794903484322270273951, 367972191114796344623951, 1116504994413003106003899551, 3498520498083111051973370669639 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Charles Babbage proved in 1819 that b_p is an integer for prime p > 2. In 1862 Wolstenholme proved that the Wolstenholme quotient W_p = b_p / p is an integer for prime p > 3; see A034602.

The quotient b_n is an integer for composite n in A267824. No composite n is known for which W_n is an integer.

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

LINKS

Robert Israel, Table of n, a(n) for n = 2..260

C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical Journal, 1 (1819), 46-49.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.

J. Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.

Wikipedia, Wolstenholme's theorem

J. Wolstenholme, On certain properties of prime numbers, Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35-39.

FORMULA

a(n) = prime(n)*A034602(n) for n > 2.

a(PrimePi(A088164(n))) == 0 mod A088164(n)^2.

EXAMPLE

a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.

MAPLE

map(p -> (binomial(2*p-1, p-1)-1)/p^2, select(isprime, [seq(i, i=3..100, 2)])); # Robert Israel, Nov 24 2015

MATHEMATICA

Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]

Table[(Binomial[2p-1, p-1]-1)/p^2, {p, Prime[Range[2, 20]]}] (* Harvey P. Dale, Jul 20 2019 *)

PROG

(MAGMA) [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015

CROSSREFS

Cf. A034602, A088164, A099906, A267824.

Sequence in context: A122590 A057991 A000871 * A035416 A042029 A073456

Adjacent sequences:  A263879 A263880 A263881 * A263883 A263884 A263885

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Nov 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 04:54 EDT 2020. Contains 336442 sequences. (Running on oeis4.)