The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263884 a(n) = (m(n)*n)! / (n!)^(m(n)+1), where m(n) is the largest prime power <= n. 0
 1, 3, 280, 2627625, 5194672859376, 1903991899429620, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000, 3752368324673960479843764075706478869144868251518618794695144146928706880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Morris and Fritze (2015) prove that a(n) is an integer. LINKS Howard Carry Morris and Daniel Fritze, Problem 1948, Math. Mag., 88 (2015), 288-289. FORMULA a(n) = A057599(n) for n a prime power. EXAMPLE The largest prime power <= 6 is m(6) = 5, so a(6) = (5*6)! / (6!)^(5+1) = 30! / (6!)^6 = 1903991899429620. CROSSREFS Cf. A057599. Sequence in context: A051365 A003706 A068250 * A096126 A057599 A239273 Adjacent sequences:  A263881 A263882 A263883 * A263885 A263886 A263887 KEYWORD nonn AUTHOR Jonathan Sondow, Dec 19 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:25 EDT 2020. Contains 336422 sequences. (Running on oeis4.)