The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263879 Length k of the longest chain of primes p_1, p_2, ..., p_k such that p_1 is the n-th prime and p_{i+1} equals 2*p_i + 1 or 2*p_i - 1 for all i < k, the +/- sign depending on i. 4
 6, 5, 4, 2, 3, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 6, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 5, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 4, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If the +/- signs are all + or all -, then p_1, p_2, ..., p_k is a Cunningham chain of the first or second kind, respectively. If p_1 > 3, then the +/- signs must be all + or all -, because if e = +1 or -1, then one of p, 2*p + e, 2*(2*p + e) - e is divisible by 3; see Löh (1989), p. 751. Cunningham chains of the first and second kinds of length > 1 cannot begin with the same prime p > 3, because one of the numbers p, 2*p-1, 2*p+1 is divisible by 3. REFERENCES R. K. Guy, Unsolved Problems in Number Theory, A7. LINKS G. Löh, Long chains of nearly doubled primes, Math. Comp., 53 (1989), 751-759. Wikipedia, Cunningham chain FORMULA a(n) = max(A181697(n), A181715(n)) for n > 2. a(n) < prime(n) for n > 2; see Löh (1989), p. 751. EXAMPLE 2, 3, 5, 11, 23, 47 is the longest such chain of primes starting with 2. Their indices are 1, 2, 3, 5, 9, 15, respectively, so a(1) = 6, a(2) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. MATHEMATICA A263879 = Join[{6, 5},   Table[p = Prime[n]; cnt = 1;    While[PrimeQ[2*p + 1] || PrimeQ[2*p - 1],     cnt++ && If[PrimeQ[2*p + 1], p = 2*p + 1, p = 2*p - 1 ]];    cnt, {n, 3, 100}]] CROSSREFS Cf. A005384, A005602, A181697, A181715. Sequence in context: A084448 A256596 A173431 * A085664 A154007 A213014 Adjacent sequences:  A263876 A263877 A263878 * A263880 A263881 A263882 KEYWORD nonn AUTHOR Jonathan Sondow, Oct 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 13:00 EDT 2020. Contains 337272 sequences. (Running on oeis4.)