The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263882 Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n). 4

%I

%S 1,5,35,2915,30771,4037381,48954659,7782070631,17875901604959,

%T 242158352370063,637739431824553035,126348774791431208099,

%U 1794903484322270273951,367972191114796344623951,1116504994413003106003899551,3498520498083111051973370669639

%N Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n).

%C Charles Babbage proved in 1819 that b_p is an integer for prime p > 2. In 1862 Wolstenholme proved that the Wolstenholme quotient W_p = b_p / p is an integer for prime p > 3; see A034602.

%C The quotient b_n is an integer for composite n in A267824. No composite n is known for which W_n is an integer.

%D R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

%H Robert Israel, <a href="/A263882/b263882.txt">Table of n, a(n) for n = 2..260</a>

%H C. Babbage, <a href="http://books.google.com/books?id=KrA-AAAAYAAJ&amp;pg=PA46">Demonstration of a theorem relating to prime numbers</a>, Edinburgh Philosophical Journal, 1 (1819), 46-49.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.

%H J. Sondow, Extending Babbage's (non-)primality tests, in <a href="https://doi.org/10.1007/978-3-319-68032-3_19">Combinatorial and Additive Number Theory II</a>, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; <a href="http://arxiv.org/abs/1812.07650">arXiv:1812.07650 [math.NT]</a>, 2018.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wolstenholme%27s_theorem">Wolstenholme's theorem</a>

%H J. Wolstenholme, <a href="http://books.google.com/books?id=vL0KAAAAIAAJ&amp;pg=PA35">On certain properties of prime numbers</a>, Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35-39.

%F a(n) = prime(n)*A034602(n) for n > 2.

%F a(PrimePi(A088164(n))) == 0 mod A088164(n)^2.

%e a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.

%p map(p -> (binomial(2*p-1,p-1)-1)/p^2, select(isprime,[seq(i,i=3..100,2)])); # _Robert Israel_, Nov 24 2015

%t Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]

%t Table[(Binomial[2p-1,p-1]-1)/p^2,{p,Prime[Range[2,20]]}] (* _Harvey P. Dale_, Jul 20 2019 *)

%o (MAGMA) [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // _Vincenzo Librandi_, Nov 25 2015

%Y Cf. A034602, A088164, A099906, A267824.

%K nonn

%O 2,2

%A _Jonathan Sondow_, Nov 22 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 16:41 EDT 2020. Contains 337315 sequences. (Running on oeis4.)