login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262684
Characteristic function for A080218.
6
0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0
OFFSET
1
COMMENTS
From Antti Karttunen, Oct 01 2018: (Start)
From n=2 onward this is also binary sequence mentioned in Baldini & Eschgfäller 2016 paper that is generated by a coupled dynamical system (f,lambda,alpha) with parameters set as f(k) = A000005(k), lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = 0 for k in Omega = {2}. Then a(n) for n >= 2 is defined by a(n) = alpha(n) if n in Omega, and otherwise by a(n) = lambda(a(f(n))), which simplifies to the formula I have today added to the formula section. (End)
LINKS
Lucilla Baldini, Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.5.
FORMULA
a(n) = A000035(A036459(n)).
Other identities and observations:
For all n >= 1, a(n) = 1 - A262683(n).
For n > 2, if A010051(n) = 1, then a(n) = 1. [For all odd primes the sequence is 1.]
a(1) = a(2) = 0; and for n > 2, a(n) = 1-a(A000005(n)). - Antti Karttunen, Oct 01 2018
PROG
(Scheme) (define (A262684 n) (A000035 (A036459 n)))
(PARI)
up_to = 65537;
A262684lista(up_to) = { my(v=vector(up_to)); v[1] = v[2] = 0; for(n=3, up_to, v[n] = 1-v[numdiv(n)]); (v); };
v262684 = A262684lista(up_to);
A262684(n) = v262684[n]; \\ Antti Karttunen, Oct 01 2018
CROSSREFS
Binary complement: A262683.
Sequence in context: A043545 A094754 A321694 * A373263 A287382 A074290
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 28 2015
STATUS
approved