The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291291 Binary sequence defined by Baldini-Eschgfäller coupled dynamical system (f,lambda,alpha) with f = A291290, lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}. 3
 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS Lucilla Baldini, Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.3. FORMULA Let f(k) = A291290(k) for k in N, lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}. Then a(n) for n >= 0 is defined by a(n) = alpha(n) if n in Omega, and otherwise by a(n) = lambda(a(f(n))). CROSSREFS Cf. A291290, A291293, A262684. Sequence in context: A295891 A093879 A117872 * A324681 A285249 A269027 Adjacent sequences:  A291288 A291289 A291290 * A291292 A291293 A291294 KEYWORD nonn AUTHOR N. J. A. Sloane, Aug 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 08:00 EST 2020. Contains 332069 sequences. (Running on oeis4.)