login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A043545 (Maximal base 2 digit of n) - (minimal base 2 digit of n). 8
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

0 followed by a string of 2^k - 1 1's. Also a(n)=0 iff n = 2^m - 1.

G.f.: 1/(1-x) - Sum_{k>=0} x^(2^k-1). - Michael Somos, Aug 25 2003

a(n) = 1 - A036987(n). 1's complement of Fredhold-Rueppel sequence. - Michael Somos, Aug 25 2003

a(n) = (1 + (-1)^binomial(n, floor(n/2)))/2. - Paul Barry, Jun 07 2006

Ignoring first zero and beginning instead with offset 2, a(n) = A006530(n) mod 2. - Rick L. Shepherd, Jun 09 2008

a(n) = A000777(n) mod 2, for n > 0. - John M. Campbell, Jul 16 2016

EXAMPLE

G.f. = x^2 + x^4 + x^5 + x^6 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + ...

MATHEMATICA

mb2d[n_]:=Module[{n2=IntegerDigits[n, 2]}, Max[n2]-Min[n2]]; Array[mb2d, 120, 0] (* Harvey P. Dale, Feb 24 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, n++; n != 2^valuation(n, 2))}; /* Michael Somos, Aug 25 2003 */

(Haskell)

a043545 = (1 -) . a036987  -- Reinhard Zumkeller, Nov 02 2013

CROSSREFS

Cf. A036987.

Sequence in context: A143538 A011656 * A094754 A091225 A175337 A132380

Adjacent sequences:  A043542 A043543 A043544 * A043546 A043547 A043548

KEYWORD

nonn,base

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 18:20 EDT 2017. Contains 292499 sequences.