login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262439
Number of primes not exceeding 1+n*(n+1)/2.
4
1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 24, 27, 30, 33, 36, 39, 43, 47, 50, 54, 59, 62, 66, 70, 75, 79, 84, 90, 94, 99, 102, 108, 115, 121, 126, 131, 137, 142, 149, 154, 161, 167, 174, 180, 189, 193, 200, 205, 217, 220, 226, 235, 242, 251, 259, 267, 274, 282, 290, 297, 306, 313, 324, 329, 338, 348, 358, 367
OFFSET
1,2
COMMENTS
Conjecture: (i) The sequence is strictly increasing, and also a(n)^(1/n) > a(n+1)^(1/(n+1)) for all n = 3,4,....
(ii) The sequence is an addition chain. In other words, for each n = 2,3,... we have a(n) = a(k) + a(m) for some 0 < k <= m < n.
(iii) All the numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts.
See also A262446 related to part (ii) of this conjecture.
Concerning part (ii) of the conjecture, Neill Clift verified in 2024 that for all 1 < n <= 2^24 = 16777216 we have a(n) = a(k) + a(m) for some 0 < k <= m < n. - Zhi-Wei Sun, Jan 29 2024
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(3) = 4 since there are exactly four primes (namely, 2, 3, 5, 7) not exceeding 1 + 3*4/2 = 7.
MATHEMATICA
a[n_]:=PrimePi[1+n(n+1)/2]
Do[Print[n, " ", a[n]], {n, 1, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 22 2015
STATUS
approved