login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262440 a(n) = Sum_{k=0..n}(binomial(n,k)*binomial(n+k-1,n-k)). 0
1, 1, 5, 22, 101, 476, 2282, 11075, 54245, 267592, 1327580, 6617128, 33110090, 166215895, 836761343, 4222640822, 21354409445, 108193910000, 549084400088, 2790744368660, 14203023709276, 72371208424880, 369170645788840, 1885051297844624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

FORMULA

G.f.: x*A'(x)/A(x), where A(x) is g.f. of A109081.

Recurrence: 2*n*(2*n-1)*(38*n^3 - 210*n^2 + 377*n - 219)*a(n) = 2*(380*n^5 - 2480*n^4 + 5998*n^3 - 6598*n^2 + 3219*n - 540)*a(n-1) + 2*(n-2)*(76*n^4 - 382*n^3 + 572*n^2 - 300*n + 45)*a(n-2) + 3*(n-3)*(n-2)*(38*n^3 - 96*n^2 + 71*n - 14)*a(n-3). - Vaclav Kotesovec, Sep 23 2015

MATHEMATICA

Join[{1}, Table[Sum[ Binomial[n, k] Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)

PROG

(Maxima)

a(n):=sum(binomial(n, k)*binomial(n+k-2, n-k-1), k, 0, n-1)/n;

A(x):=sum(a(n)*x^n, n, 1, 30);

taylor(diff(A(x), x)/A(x)*x, x, 0, 10);

(MAGMA) [&+[Binomial(n, k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 13 2015

(PARI)  a(n)=sum(k=0, n, (binomial(n, k)*binomial(n+k-1, n-k))) \\ Anders Hellström, Sep 23 2015

CROSSREFS

Cf. A109081.

Sequence in context: A033452 A295519 A179602 * A296044 A048251 A017971

Adjacent sequences:  A262437 A262438 A262439 * A262441 A262442 A262443

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Sep 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 00:51 EST 2020. Contains 332028 sequences. (Running on oeis4.)