The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258409 Greatest common divisor of all (d-1)'s, where the d's are the positive divisors of n. 16
 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 2, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 2, 1, 78, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS a(n) = 1 for even n; a(p) = p-1 for prime p. a(n) is even for odd n (since all divisors of n are odd). It appears that a(n) = A052409(A005179(n)), i.e., it is the largest integer power of the smallest number with exactly n divisors. - Michel Marcus, Nov 10 2015 Conjecture: GCD of all (p-1) for prime p|n. - Thomas Ordowski, Sep 14 2016 Conjecture is true, because the set of numbers == 1 (mod g) is closed under multiplication. - Robert Israel, Sep 14 2016 Conjecture: a(n) = A289508(A328023(n)) = GCD of the differences between consecutive divisors of n. See A328163 and A328164. - Gus Wiseman, Oct 16 2019 LINKS Ivan Neretin, Table of n, a(n) for n = 2..10000 EXAMPLE 65 has divisors 1, 5, 13, and 65, hence a(65) = gcd(1-1,5-1,13-1,65-1) = gcd(0,4,12,64) = 4. MAPLE f:= n -> igcd(op(map(`-`, numtheory:-factorset(n), -1))): map(f, [\$2..100]); # Robert Israel, Sep 14 2016 MATHEMATICA Table[GCD @@ (Divisors[n] - 1), {n, 2, 100}] PROG (PARI) a(n) = my(g=0); fordiv(n, d, g = gcd(g, d-1)); g; \\ Michel Marcus, May 29 2015 (PARI) a(n) = gcd(apply(x->x-1, divisors(n))); \\ Michel Marcus, Nov 10 2015 (PARI) a(n)=if(n%2==0, return(1)); if(n%3==0, return(2)); if(n%5==0 && n%4 != 1, return(2)); gcd(apply(p->p-1, factor(n)[, 1])) \\ Charles R Greathouse IV, Sep 19 2016 (Haskell) a258409 n = foldl1 gcd \$ map (subtract 1) \$ tail \$ a027750_row' n -- Reinhard Zumkeller, Jun 25 2015 CROSSREFS Cf. A049559, A057237, A060680, A063994, A187730, A027750. Cf. A084190 (similar but with LCM). Looking at prime indices instead of divisors gives A328167. Partitions whose parts minus 1 are relatively prime are A328170. Cf. A000005, A060681, A060683, A193829, A289508. Sequence in context: A247339 A281071 A256908 * A060680 A057237 A187730 Adjacent sequences:  A258406 A258407 A258408 * A258410 A258411 A258412 KEYWORD nonn AUTHOR Ivan Neretin, May 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 19:42 EDT 2020. Contains 336483 sequences. (Running on oeis4.)