

A289508


a(n) is the GCD of the indices j for which the jth prime p_j divides n.


82



0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 1, 1, 7, 1, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 1, 1, 1, 1, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 4, 1, 1, 1, 16, 1, 1, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 1, 1, 20, 1, 21, 1, 1, 1, 1, 1, 22, 1, 2, 1, 23
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The number n = Product_j p_j can be regarded as an index for the multiset of all the j's, occurring with multiplicity corresponding to the highest power of p_j dividing n. Then a(n) is the gcd of the elements of this multiset. Compare A056239, where the same encoding for integer multisets('Heinz encoding') is used, but where A056239(n) is the sum, rather than the gcd, of the elements of the corresponding multiset (partition) of the j's. Cf. also A003963, for which A003963(n) is the product of the elements of the corresponding multiset.
a(m*n) = gcd(a(m),a(n)).  Robert Israel, Jul 19 2017


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000


FORMULA

a(n) = gcd_j j, where p_j divides n.
a(n) = A289506(n)/A289507(n).


EXAMPLE

a(n) = 1 for all even n as 2 = p_1. Also a(p_j) = j.
Further, a(703) = 4 because 703 = p_8.p_{12} and gcd(8,12) = 4.


MAPLE

f:= n > igcd(op(map(numtheory:pi, numtheory:factorset(n)))):
map(f, [$1..100]); # Robert Israel, Jul 19 2017


MATHEMATICA

Table[GCD @@ Map[PrimePi, FactorInteger[n][[All, 1]] ], {n, 2, 83}] (* Michael De Vlieger, Jul 19 2017 *)


PROG

(PARI) a(n) = my(f=factor(n)); gcd(apply(x>primepi(x), f[, 1])); \\ Michel Marcus, Jul 19 2017
(Python)
from sympy import primefactors, primepi, gcd
def a(n):
return gcd([primepi(d) for d in primefactors(n)])
print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 20 2017


CROSSREFS

Cf. A289506, A289507.
Sequence in context: A280504 A087267 A128267 * A028920 A260738 A055396
Adjacent sequences: A289505 A289506 A289507 * A289509 A289510 A289511


KEYWORD

easy,nonn


AUTHOR

Christopher J. Smyth, Jul 11 2017


STATUS

approved



