login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052409 a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k). 47
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002

a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009

A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014

LINKS

Daniel Forgues, Table of n, a(n) for n = 1..100000

N. J. A. Sloane, Maple programs for A007916, A278028, A278029, A052409, A089723, A277564

Eric Weisstein's World of Mathematics, Power

Eric Weisstein's World of Mathematics, Perfect Power

Index entries for sequences computed from exponents in factorization of n

FORMULA

a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 07 2017

EXAMPLE

n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.

For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.

MAPLE

See link.

MATHEMATICA

Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (* Ray Chandler, Jan 24 2006 *)

PROG

(Haskell)

a052409 1 = 0

a052409 n = foldr1 gcd $ a124010_row n

-- Reinhard Zumkeller, May 26 2012

(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\ Charles R Greathouse IV, Oct 30 2012

(Scheme) (define (A052409 n) (if (= 1 n) 0 (gcd (A067029 n) (A052409 (A028234 n))))) ;; Antti Karttunen, Aug 07 2017

CROSSREFS

Cf. A052410, A005361, A051903, A072411-A072414, A124010, A075802, A072776, A270492.

Apart from the initial term essentially the same as A253641.

Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.

Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.

Sequence in context: A158052 A253641 A158378 * A051904 A070012 A071178

Adjacent sequences:  A052406 A052407 A052408 * A052410 A052411 A052412

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

EXTENSIONS

More terms from Labos Elemer, Jun 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 14 21:33 EST 2017. Contains 296020 sequences.