login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257740 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 16
1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row n is the inverse binomial transform of the n-th row of array A144074, which has the Euler transform of the powers of k in column k.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i).

EXAMPLE

T(2,2) = 3: {ab}, {ba}, {a,b}.

T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}.

Triangle T(n,k) begins:

  1;

  0,  1;

  0,  2,    3;

  0,  3,   14,    13;

  0,  5,   49,   114,     73;

  0,  7,  148,   672,   1028,     501;

  0, 11,  427,  3334,   9182,   10310,    4051;

  0, 15, 1170, 15030,  66584,  129485,  114402,   37633;

  0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353;

MAPLE

A:= proc(n, k) option remember; `if`(n=0, 1, add(add(

      d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n)

    end:

T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):

seq(seq(T(n, k), k=0..n), n=0..10);

MATHEMATICA

A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 23 2017, adapted from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000041 (for n>0), A261043, A320213, A320214, A320215, A320216, A320217, A320218, A320219, A320220.

Row sums give A257741.

Main diagonal gives A000262.

T(2n,n) gives A257742.

Cf. A144074, A319501.

Sequence in context: A253283 A261719 A137663 * A161628 A244119 A122059

Adjacent sequences:  A257737 A257738 A257739 * A257741 A257742 A257743

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, May 06 2015

EXTENSIONS

Name changed by Alois P. Heinz, Sep 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 00:04 EDT 2019. Contains 328025 sequences. (Running on oeis4.)