login
A256347
Moduli n for which A248218(n) = 7.
1
41, 123, 131, 287, 317, 393, 503, 547, 727, 779, 861, 917, 951, 1091, 1237, 1271, 1277, 1509, 1517, 1627, 1637, 1641, 1681, 1763, 2089, 2181, 2219, 2239, 2337, 2357, 2383, 2489, 2531, 2671, 2751, 2789
OFFSET
1,1
COMMENTS
If x is a member, and y is a member of this sequence or A248219, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021
LINKS
MAPLE
filter:= proc(n) local x, k, R, p;
x:= 0; R[0]:= 0;
for k from 1 do
x:= x^2+1 mod n;
if assigned(R[x]) then return evalb(k-R[x] = 7)
else R[x]:= k
fi
od;
end proc:
select(filter, [$1..10000]); # Robert Israel, Mar 09 2021
PROG
(PARI) for(i=1, 3000, A248218(i)==7&&print1(i", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 25 2015
STATUS
approved