login
A256344
Moduli n for which A248218(n) = 4 (length of the terminating cycle of 0 under x -> x^2+1 modulo n).
1
13, 26, 39, 47, 52, 78, 79, 91, 94, 104, 113, 141, 143, 156, 158, 169, 173, 182, 188, 197, 208, 226, 237, 247, 273, 282, 286, 299, 312, 316, 329, 338, 339, 346, 353, 364, 376, 377, 394, 403, 416, 429, 439, 452, 474, 481, 494, 507, 517, 519, 546, 553, 559, 564, 572, 591, 598
OFFSET
1,1
COMMENTS
If x is a member and y is a member of this sequence or A248219 or A256342, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021
LINKS
EXAMPLE
MAPLE
filter:= proc(n) local x, k, R, p;
x:= 0; R[0]:= 0;
for k from 1 do
x:= x^2+1 mod n;
if assigned(R[x]) then return evalb(k-R[x] = 4)
else R[x]:= k
fi
od;
end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 09 2021
PROG
(PARI) for(i=1, 600, A248218(i)==4&&print1(i", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 25 2015
STATUS
approved