login
A256345
Moduli n for which A248218(n) = 5 (length of the terminating cycle of 0 under x -> x^2+1 modulo n).
1
83, 151, 167, 223, 249, 257, 283, 359, 373, 453, 501, 563, 581, 607, 669, 677, 771, 821, 849, 953, 1057, 1077, 1119, 1169, 1321, 1561, 1577, 1689, 1743, 1799, 1821, 1981, 1987, 2017, 2031, 2463, 2513, 2573, 2611, 2833, 2859, 2869
OFFSET
1,1
COMMENTS
If x is a member and y is a member of this sequence or A248219, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021
LINKS
EXAMPLE
MAPLE
filter:= proc(n) local x, k, R, p;
x:= 0; R[0]:= 0;
for k from 1 do
x:= x^2+1 mod n;
if assigned(R[x]) then return evalb(k-R[x] = 5)
else R[x]:= k
fi
od;
end proc:
select(filter, [$1..3000]); # Robert Israel, Mar 09 2021
PROG
(PARI) for(i=1, 2900, A248218(i)==5&&print1(i", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 25 2015
STATUS
approved