OFFSET
1,1
COMMENTS
Numbers a(n)=c^2 such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b being an odd squared integer (A016754) and M (A253707).
To every odd squared integer b (A016754) corresponds a sum of M (A253707) consecutive cubed integers starting at b^3 having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1)(2b-1)/2 = n(8n(n+1)+1) (A253707), c(n)= (b-1)(4b^2-1)/8 = (n(n+1)/2)(4(2n+1)^4-1) (A253708) and a(n)=c(n)^2 (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..50000
Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = ((n(n+1)/2)(4(2n+1)^4-1))^2.
G.f.: -x*(104329*x^10 +54848732*x^9 +2597306469*x^8 +30065816496*x^7 +119309063058*x^6 +186443360232*x^5 +119309063058*x^4 +30065816496*x^3 +2597306469*x^2 +54848732*x +104329) / (x -1)^13. - Colin Barker, Jan 10 2015
EXAMPLE
For n=1, b(1)=9, M(1)=17, c(1)=323, a(1)= 104329 (see File File Triplets (M,b,c) for a=(2n+1)^2 link).
MAPLE
restart: for n from 1 to 50000 do a:=((n*(n+1)/2)(4*(2*n+1)^4-1))^2: print (a); end do:
MATHEMATICA
f[n_] := ((n (n + 1)/2) (4 (2 n + 1)^4 - 1))^2; Array[f, 20] (* Michael De Vlieger, Jan 10 2015 *)
PROG
(PARI) Vec(-x*(104329*x^10 +54848732*x^9 +2597306469*x^8 +30065816496*x^7 +119309063058*x^6 +186443360232*x^5 +119309063058*x^4 +30065816496*x^3 +2597306469*x^2 +54848732*x +104329) / (x -1)^13 + O(x^100)) \\ Colin Barker, Jan 10 2015
(Magma) [((n*(n+1)/2)*(4*(2*n+1)^4-1))^2: n in [1..20]]; // Vincenzo Librandi, Jan 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jan 09 2015
STATUS
approved