

A163393


Numbers n such that n^2 can be represented as sum of (at least two) consecutive cubes and n is not a triangular number.


12



204, 312, 315, 323, 504, 588, 720, 2079, 2170, 2940, 4472, 4914, 5187, 5880, 5984, 6630, 7497, 8721, 9360, 10695, 11024, 13104, 14160, 16296, 16380, 18333, 18810, 22022, 22330, 23247, 31248, 36729, 42021, 43065, 43309, 49665
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A subsequence of A126200. [R. J. Mathar, Aug 02 2009]
A supersequence of A238099.  N. J. A. Sloane, Feb 25 2014


REFERENCES

H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, Problem 135.


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..500


EXAMPLE

a(1) = 204 as 204^2 = 41616 = 23^3 + 24^3 + 25^3.


CROSSREFS

Cf. A126200, A238099.
Sequence in context: A260975 A271643 A108877 * A245468 A154518 A249285
Adjacent sequences: A163390 A163391 A163392 * A163394 A163395 A163396


KEYWORD

nonn


AUTHOR

Gaurav Kumar, Jul 26 2009


EXTENSIONS

8778 and 10296 removed by Chai Wah Wu, Mar 10 2016


STATUS

approved



