OFFSET
1,2
COMMENTS
The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.
LINKS
Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
Luciano Ancora, Second partial sums of the m-th powers
FORMULA
a(n) = (n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460.
a(n) = 2*a(n-1)-a(n-2)+n^12.
G.f.: x*(1 + 4083*x + 478271*x^2 + 10187685*x^3 + 66318474*x^4 + 162512286*x^5 + 162512286*x^6 + 66318474*x^7 + 10187685*x^8 + 478271*x^9 + 4083*x^10 + x^11)/(1-x)^15. - Vincenzo Librandi, Jan 19 2015
MATHEMATICA
RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^12, a[1] == 1, a[2] == 4098}, a, {n, 1, 25}] (* Bruno Berselli, Jan 19 2015 *)
Table[(n + 1)^2 n (n + 2) (30 n^10 + 300 n^9 + 925 n^8 + 200 n^7 - 3022 n^6 - 772 n^5 + 7073 n^4 - 1228 n^3 - 7888 n^2 + 5528 n - 691)/5460, {n, 1, 25}] (* Vincenzo Librandi, Jan 19 2015 *)
Nest[Accumulate[#]&, Range[30]^12, 2] (* Harvey P. Dale, Aug 17 2020 *)
PROG
(Magma) [(n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460: n in [1..30]]; // Vincenzo Librandi, Jan 19 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Luciano Ancora, Jan 12 2015
EXTENSIONS
a(22) corrected by Vincenzo Librandi, Jan 19 2015
STATUS
approved