login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252168
Smallest k > 0 such that |(2n-1) - 2^k| is prime, or -1 if no such k exists.
2
2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 4, 1, 2, 4, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 4, 4, 47, 1, 2, 1, 2, 6, 1, 1, 2, 3, 3, 8, 1, 1, 2, 3, 1, 2, 5, 1, 2, 1, 2, 4
OFFSET
1,1
COMMENTS
It is known that a(254602) = -1, because |509203-2^k| is always divisible by 3, 5, 7, 13, 17, or 241. a(1147) is the first unknown term.
a((A101036(n)+1)/2) = -1, so there are infinitely many n such that a(n) = -1.
a((A133122(n)+1)/2) = A096502((A133122(n)-1)/2).
LINKS
EXAMPLE
a(12) = 2 because 2*12-1 = 23 and that 23-2^1 = 21 is not prime but 23-2^2 = 19 is.
a(69) = 6 because 2*69-1 = 137, |137-2^k| is composite for k = 1, 2, 3, 4, 5 and prime for k = 6.
Even the smallest k can be also very large. For example, a(169) = 791.
a(1147) > 65536.
MATHEMATICA
Table[k = 1; While[!PrimeQ[Abs[(2*n-1) - 2^k]], k++]; k, {n, 1, 1000}]
PROG
(PARI) A252168(n)={ my(k=1); n=2*n-1; while(!ispseudoprime(abs(n-2^k)), k++); k }
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Eric Chen, Dec 14 2014
EXTENSIONS
a(19) corrected by Jinyuan Wang, Mar 25 2023
STATUS
approved