The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252170 Smallest prime p such that 1/p has duodecimal period n. 0
 11, 13, 157, 5, 22621, 7, 659, 89, 37, 19141, 23, 20593, 477517, 211, 61, 17, 2693651, 1657, 29043636306420266077, 85403261, 8177824843189, 57154490053, 47, 193, 303551, 79, 306829, 673, 59, 31, 373, 153953, 886381, 2551, 71, 73, 3933841, 3307 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = the smallest primitive prime factor of 12^n-1. a(n) is known up to n = 310. LINKS EXAMPLE a(4) = 5 because 1/5 = 0.249724972497... and 5 is the smallest prime with period 4 in base 12. a(5) = 22621 because 1/22621 = 0.0000100001... and 22621 is the smallest (in fact, the only one) prime with period 5 in base 12. MAPLE S:= {}: for n from 1 to 72 do   F:= numtheory:-factorset(12^n-1) minus S;   A[n]:= min(F);   S:= S union F; od: seq(A[n], n=1..72); MATHEMATICA prms={}; Table[f=First/@FactorInteger[12^n-1]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 72}] PROG (PARI) listap(nn) = {prf = []; for (n=1, nn, vp = (factor(12^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); } \\ Michel Marcus, Dec 15 2014; after A007138 CROSSREFS Cf. A007138 (decimal version). Cf. A246004, A246489. Sequence in context: A136296 A094621 A178426 * A144375 A140969 A064759 Adjacent sequences:  A252167 A252168 A252169 * A252171 A252172 A252173 KEYWORD nonn AUTHOR Eric Chen, Dec 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 11:14 EDT 2020. Contains 334827 sequences. (Running on oeis4.)