This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252171 Number of length n+2 0..2 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero 1
 3, 49, 83, 369, 957, 3217, 9295, 28977, 86267, 262541, 787121, 2374869, 7129517, 21441049, 64366847, 193314809, 580205169, 1741524549, 5225949099, 15681813101, 47052271005, 141174409049, 423556062389, 1270747118001, 3812396126529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 2 of A252177 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 8*a(n-1) -21*a(n-2) +10*a(n-3) +54*a(n-4) -128*a(n-5) +125*a(n-6) -142*a(n-8) +176*a(n-9) -199*a(n-10) +216*a(n-11) -150*a(n-12) +80*a(n-13) -24*a(n-14) EXAMPLE Some solutions for n=6 ..0....0....2....0....1....2....0....1....1....0....1....2....0....1....0....2 ..1....0....2....1....1....2....0....0....0....2....1....0....1....2....1....0 ..2....0....1....0....1....1....0....0....1....0....0....2....1....0....0....0 ..1....0....2....0....2....1....2....2....2....1....2....2....0....2....1....2 ..1....0....1....2....1....1....2....1....0....0....2....2....1....0....2....0 ..0....1....1....2....0....0....2....2....1....0....0....1....1....2....2....2 ..0....1....2....1....1....1....0....0....0....0....1....1....1....2....2....2 ..2....1....1....2....1....2....1....2....2....2....0....1....1....0....1....0 CROSSREFS Sequence in context: A033494 A079837 A188380 * A160763 A041523 A054206 Adjacent sequences:  A252168 A252169 A252170 * A252172 A252173 A252174 KEYWORD nonn AUTHOR R. H. Hardin, Dec 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 23:51 EST 2018. Contains 317275 sequences. (Running on oeis4.)