login
A249800
a(n) is the smallest prime q such that n(q+1)+1 is prime, that is, the smallest prime q such that n = (p-1)/(q+1) with p prime; or a(n) = -1 if no such q exists.
4
3, 2, 3, 2, 5, 2, 3, 11, 3, 2, 5, 2, 3, 2, 3, 5, 5, 3, 11, 2, 5, 2, 5, 2, 3, 2, 3, 3, 7, 5, 11, 2, 5, 2, 5, 2, 3, 5, 3, 5, 17, 2, 3, 7, 3, 2, 5, 3, 3, 2, 5, 2, 13, 2, 5, 5, 3, 3, 11, 2, 5, 5, 5, 2, 7, 2, 3, 5, 3, 2, 7, 5, 3, 2, 7, 2, 5, 3, 3, 2, 5, 113, 5, 3, 11
OFFSET
1,1
COMMENTS
Variation on Schinzel's Hypothesis.
LINKS
Eric Weisstein's World of Mathematics, Schinzel's Hypothesis.
EXAMPLE
For n=1 the minimum primes p and q are 5 and 3: (p-1)/(q+1) = (5-1)/(3+1) = 4/4 = 1. Therefore a(1)=3.
For n=2 the minimum primes p and q are 7 and 2: (p-1)/(q+1) = (7-1)/(2+1) = 6/3 = 2. Therefore a(2)=2.
MAPLE
with(numtheory): P:=proc(q) local k, n;
for n from 1 to q do for k from 1 to q do
if isprime(n*(ithprime(k)+1)+1) then print(ithprime(k)); break; fi;
od; od; end: P(10^5);
MATHEMATICA
a249800[n_Integer] := Module[{q}, q = 2; While[CompositeQ[n (q + 1) + 1], q = NextPrime[q]]; q]; a249800/@Range[120] (* Michael De Vlieger, Nov 19 2014 *)
PROG
(PARI) a(n) = my(q=2); while(! isprime(n*(q+1)+1), q = nextprime(q+1)); q; \\ Michel Marcus, Nov 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 06 2014
STATUS
approved