login
A062251
Take minimal prime q such that n(q+1)-1 is prime (A060324), that is, the smallest prime q so that n = (p+1)/(q+1) with p prime; sequence gives values of p.
8
2, 5, 11, 11, 19, 17, 41, 23, 53, 29, 43, 47, 103, 41, 59, 47, 67, 53, 113, 59, 83, 131, 137, 71, 149, 103, 107, 83, 173, 89, 433, 127, 131, 101, 139, 107, 443, 113, 233, 239, 163, 167, 257, 131, 179, 137, 281, 191, 293, 149, 1019, 311, 211, 431, 439, 167, 227
OFFSET
1,1
COMMENTS
A conjecture of Schinzel, if true, would imply that such a p always exists.
LINKS
Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
FORMULA
a(n) = (A060324(n) + 1) * n - 1. - Reinhard Zumkeller, Aug 28 2014
EXAMPLE
1 = (2+1)/(2+1), 2 = (5+1)/(2+1), 3 = (11+1)/(3+1), 4 = (11+1)/(2+1), ...
MAPLE
a:= proc(n) local q;
q:= 2;
while not isprime(n*(q+1)-1) do
q:= nextprime(q);
od; n*(q+1)-1
end:
seq(a(n), n=1..300);
MATHEMATICA
a[n_] := (q = 2; While[ ! PrimeQ[n*(q+1)-1], q = NextPrime[q]]; n*(q+1)-1); Table[a[n], {n, 1, 57}] (* Jean-François Alcover, Feb 17 2012, after Maple *)
PROG
(Haskell)
a062251 n = (a060324 n + 1) * n - 1 -- Reinhard Zumkeller, Aug 28 2014
CROSSREFS
Cf. A060424. Values of q are given in A060324.
Sequence in context: A300677 A079008 A144573 * A091114 A155767 A079782
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Jul 01 2001
EXTENSIONS
More terms from Vladeta Jovovic, Jul 02 2001
STATUS
approved