login
A249798
Numbers k such that the product of the first k primes minus the (k+1)-th prime is prime.
1
3, 4, 5, 6, 8, 22, 23, 24, 35, 73, 83, 147, 553, 1098, 1115, 1542, 2097, 2149
OFFSET
1,1
FORMULA
a(n) = primepi(A093078(n)). - Michel Marcus, Nov 06 2014
EXAMPLE
p(1)*p(2)*p(3)*p(4) - p(5) = 2*3*5*7 - 11 = 199. 199 is prime, therefore 4 is in the sequence.
MATHEMATICA
Select[Range[1000], PrimeQ[Times@@(Prime[Range[#]])-Prime[#+1]]&]
PROG
(PARI) lista(nn) = {prp = 1; for(n=1, nn, prp *= prime(n); if (isprime(prp-prime(n+1)), print1(n, ", ")); ); } \\ Michel Marcus, Nov 06 2014
CROSSREFS
Sequence in context: A094576 A103103 A217347 * A037348 A277898 A212640
KEYWORD
nonn,more
AUTHOR
Ivan N. Ianakiev, Nov 06 2014
EXTENSIONS
a(17)-a(18) using A093078 from Michael S. Branicky, Mar 18 2024
STATUS
approved