The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060324 a(n) is the minimal prime q such that n*(q+1)-1 is prime, that is, the smallest prime q so that n = (p+1)/(q+1) with p prime; or a(n) = -1 if no such q exists. 11
 2, 2, 3, 2, 3, 2, 5, 2, 5, 2, 3, 3, 7, 2, 3, 2, 3, 2, 5, 2, 3, 5, 5, 2, 5, 3, 3, 2, 5, 2, 13, 3, 3, 2, 3, 2, 11, 2, 5, 5, 3, 3, 5, 2, 3, 2, 5, 3, 5, 2, 19, 5, 3, 7, 7, 2, 3, 2, 5, 2, 7, 11, 3, 2, 5, 2, 5, 3, 11, 5, 3, 5, 13, 5, 5, 2, 3, 2, 7, 2, 7, 5, 3, 2, 5, 2, 3, 2, 17, 2, 7, 3, 5, 2, 3, 3, 11, 2, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A conjecture of Schinzel, if true, would imply that such a q always exists. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7. Peter Luschny, Schinzel-Sierpinski conjecture and Calkin-Wilf tree. FORMULA a(n) = (A062251(n)+1) / n - 1. - Reinhard Zumkeller, Aug 28 2014 EXAMPLE 1 = (2+1)/(2+1), so the first term is 2; 3(2+1) - 1 = 8 which is not prime, yet 3(3+1) - 1 = 11 is prime (3 = (11+1)/(3+1)) so the 3rd term is 3. MAPLE a:= proc(n) local q;        q:= 2;        while not isprime(n*(q+1)-1) do           q:= nextprime(q);        od; q     end: seq(a(n), n=1..300); # Alois P. Heinz, Feb 11 2011 MATHEMATICA a[n_] := (q = 2; While[!PrimeQ[n*(q + 1) - 1], q = NextPrime[q]]; q); a /@ Range[100] (* Jean-François Alcover, Jul 20 2011, after Maple prog. *) PROG (Haskell) a060324 n = head [q | q <- a000040_list, a010051' (n * (q + 1) - 1) == 1] -- Reinhard Zumkeller, Aug 28 2014 (PARI) a(n) = {my(q=2); while (!isprime(n*(q+1)-1), q = nextprime(q+1)); q; } \\ Michel Marcus, Nov 20 2017 CROSSREFS Cf. A060424. Values of p are given in A062251. Cf. A000040, A010051. Sequence in context: A054714 A235922 A255598 * A046216 A105560 A331597 Adjacent sequences:  A060321 A060322 A060323 * A060325 A060326 A060327 KEYWORD nonn,nice,easy AUTHOR Matthew Conroy, Mar 29 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 13:37 EDT 2020. Contains 334777 sequences. (Running on oeis4.)