login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244523 Irregular triangle read by rows: T(n,k) is the number of identity trees with n nodes and maximal branching factor k. 10
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 5, 0, 1, 10, 1, 0, 1, 21, 3, 0, 1, 42, 9, 0, 1, 87, 25, 0, 1, 178, 66, 2, 0, 1, 371, 170, 6, 0, 1, 773, 431, 21, 0, 1, 1630, 1076, 63, 0, 1, 3447, 2665, 185, 1, 0, 1, 7346, 6560, 512, 7, 0, 1, 15712, 16067, 1403, 26, 0, 1, 33790, 39219, 3750, 91, 0, 1, 72922, 95476, 9928, 291 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,11

COMMENTS

Row sums give A004111.

LINKS

Joerg Arndt and Alois P. Heinz, Rows n = 1..285, flattened

EXAMPLE

Triangle starts:

01:  1,

02:  0, 1,

03:  0, 1,

04:  0, 1, 1,

05:  0, 1, 2,

06:  0, 1, 5,

07:  0, 1, 10, 1,

08:  0, 1, 21, 3,

09:  0, 1, 42, 9,

10:  0, 1, 87, 25,

11:  0, 1, 178, 66, 2,

12:  0, 1, 371, 170, 6,

13:  0, 1, 773, 431, 21,

14:  0, 1, 1630, 1076, 63,

15:  0, 1, 3447, 2665, 185, 1,

16:  0, 1, 7346, 6560, 512, 7,

17:  0, 1, 15712, 16067, 1403, 26,

18:  0, 1, 33790, 39219, 3750, 91,

19:  0, 1, 72922, 95476, 9928, 291,

20:  0, 1, 158020, 231970, 25969, 885, 3,

21:  0, 1, 343494, 562736, 67462, 2588, 15,

22:  0, 1, 749101, 1363640, 174039, 7373, 70,

23:  0, 1, 1638102, 3301586, 446884, 20555, 256,

24:  0, 1, 3591723, 7988916, 1142457, 56413, 884,

25:  0, 1, 7893801, 19322585, 2911078, 152812, 2840, 3,

...

The A004111(7) = 12 level-sequences and the branching sequences for the identity trees with 7 nodes are (dots for zeros), together with the maximal branching factors, are:

01:  [ . 1 2 3 4 5 6 ]    [ 1 1 1 1 1 1 . ]   1

02:  [ . 1 2 3 4 5 4 ]    [ 1 1 1 2 1 . . ]   2

03:  [ . 1 2 3 4 5 3 ]    [ 1 1 2 1 1 . . ]   2

04:  [ . 1 2 3 4 5 2 ]    [ 1 2 1 1 1 . . ]   2

05:  [ . 1 2 3 4 5 1 ]    [ 2 1 1 1 1 . . ]   2

06:  [ . 1 2 3 4 3 2 ]    [ 1 2 2 1 . . . ]   2

07:  [ . 1 2 3 4 3 1 ]    [ 2 1 2 1 . . . ]   2

08:  [ . 1 2 3 4 2 3 ]    [ 1 2 1 1 . 1 . ]   2

09:  [ . 1 2 3 4 2 1 ]    [ 2 2 1 1 . . . ]   2

10:  [ . 1 2 3 4 1 2 ]    [ 2 1 1 1 . 1 . ]   2

11:  [ . 1 2 3 2 1 2 ]    [ 2 2 1 . . 1 . ]   2

12:  [ . 1 2 3 1 2 1 ]    [ 3 1 1 . 1 . . ]   3

This gives row n=7: [0, 1, 10, 1, 0, 0, ... ].

MAPLE

b:= proc(n, i, t, k) option remember; `if`(n=0, 1,

      `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)*

       b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))

    end:

g:= proc(n) local k; if n=1 then 0 else

       for k while T(n, k)>0 do od; k-1 fi

    end:

T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)):

seq(seq(T(n, k), k=0..g(n)), n=1..25);

MATHEMATICA

b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; g[n_] := If[ n == 1 , 0, For[k=1, T[n, k]>0 , k++]; k-1]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, g[n]}], {n, 1, 25}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000012 (for n>0), A245747, A245748, A245749, A245750, A245751, A245752, A245753, A245754, A245755.

Cf. A004111 (identity trees), A244372 (unlabeled rooted trees by outdegree).

Sequence in context: A212808 A209687 A108263 * A134433 A125183 A092583

Adjacent sequences:  A244520 A244521 A244522 * A244524 A244525 A244526

KEYWORD

nonn,tabf

AUTHOR

Joerg Arndt and Alois P. Heinz, Jul 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 24 00:59 EDT 2017. Contains 285338 sequences.