This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125183 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that the set {|p(i)-i|, i=1,2,...,n} has exactly k elements (1<=k<=n). 3
 1, 2, 0, 1, 5, 0, 3, 11, 6, 4, 1, 28, 55, 32, 4, 3, 69, 210, 330, 108, 0, 1, 102, 846, 2177, 1590, 324, 0, 4, 279, 2694, 11221, 17578, 7624, 888, 32, 1, 328, 7791, 54777, 135993, 123474, 37524, 2896, 96, 3, 961, 24032, 227906, 914364, 1427342, 839904, 182824, 11464, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums are the factorial numbers (A000142). T(n,n) = A075866(n). In the Maple program define n (<=10) to obtain row n. LINKS Alois P. Heinz, Rows n = 1..14, flattened EXAMPLE T(4,3) = 6 because we have 1423, 1342, 3124, 4312, 2314 and 3421. Triangle starts:   1;   2,  0;   1,  5,   0;   3, 11,   6,   4;   1, 28,  55,  32,   4;   3, 69, 210, 330, 108,  0; MAPLE n:=7: with(combinat): P:=permute(n): for j from 1 to n! do c[j]:=0 od: for j from 1 to n! do if nops({seq(abs(P[j][i]-i), i=1..n)}) = 1 then c[1]:=c[1]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 2 then c[2]:=c[2]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 3 then c[3]:=c[3]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 4 then c[4]:=c[4]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 5 then c[5]:=c[5]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 6 then c[6]:=c[6]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 7 then c[7]:=c[7]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 8 then c[8]:=c[8]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 9 then c[9]:=c[9]+1 elif nops({seq(abs(P[j][i]-i), i=1..n)}) = 10 then c[10]:=c[10]+1 else fi od: seq(c[i], i=1..n); # yields row n for the specified n (n<=10) # second Maple program: b:= proc(p, s) option remember; `if`(p={}, x^nops(s),       add(b(p minus {t}, s union {abs(t-nops(p))}), t=p))     end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b({\$1..n}, {})): seq(T(n), n=1..9);  # Alois P. Heinz, Feb 21 2019 CROSSREFS Cf. A000142, A075866, A125182. Sequence in context: A244523 A325304 A134433 * A092583 A321619 A285212 Adjacent sequences:  A125180 A125181 A125182 * A125184 A125185 A125186 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Nov 24 2006 EXTENSIONS More terms from Alois P. Heinz, Feb 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 23:11 EDT 2019. Contains 328379 sequences. (Running on oeis4.)