OFFSET
0,14
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
T(5,1) = 1: [5].
T(5,3) = 6: [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
T(5,4) = 4: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 0, 1;
0, 1, 1, 3, 1;
0, 1, 0, 6, 4, 1;
0, 1, 1, 4, 4, 5, 1;
0, 1, 0, 9, 8, 15, 6, 1;
0, 1, 1, 9, 5, 15, 21, 7, 1;
0, 1, 0, 10, 8, 20, 6, 28, 8, 1;
0, 1, 1, 12, 12, 6, 96, 42, 36, 9, 1;
MAPLE
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, x^j*
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
seq(T(n), n=0..16);
MATHEMATICA
b[n_, i_, s_] := b[n, i, s] = If[n==0, Total[s]!, If[i<1, 0, Expand[Sum[ If[j>0 && MemberQ[s, j], 0, x^j*b[n-i*j, i-1, If[j==0, s, s ~Union~ {j}] ]/j!], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
PROG
(PARI)
T(n)={Vecrev(((r, k, b, w)->if(!k||!r, if(r, 0, w!*x^w), sum(m=0, r\k, if(!m || !bittest(b, m), self()(r-k*m, k-1, bitor(b, 1<<m), w+m)/m!))))(n, n, 1, 0))}
{ for(n=0, 10, print(T(n))) } \\ Andrew Howroyd, Aug 31 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 25 2014
STATUS
approved