login
A321776
Number of compositions of n into parts with distinct multiplicities and with exactly six parts.
2
1, 6, 21, 6, 96, 192, 142, 372, 357, 372, 543, 798, 598, 1098, 1098, 1044, 1359, 1764, 1459, 2184, 2100, 2130, 2580, 3090, 2635, 3576, 3561, 3576, 4116, 4776, 4162, 5382, 5337, 5382, 6057, 6768, 6058, 7548, 7518, 7548, 8259, 9174, 8359, 10074, 10014, 10020
OFFSET
6,2
LINKS
FORMULA
Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^6*(1 + 7*x + 28*x^2 + 33*x^3 + 122*x^4 + 286*x^5 + 394*x^6 + 638*x^7 + 687*x^8 + 652*x^9 + 433*x^10 + 319*x^11) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = -a(n-1) - a(n-2) + a(n-4) + 2*a(n-5) + 3*a(n-6) + 2*a(n-7) + a(n-8) - a(n-9) - 2*a(n-10) - 3*a(n-11) - 2*a(n-12) - a(n-13) + a(n-15) + a(n-16) + a(n-17).
(End)
CROSSREFS
Column k=6 of A242887.
Sequence in context: A069257 A133885 A170867 * A064929 A298266 A302202
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 18 2018
STATUS
approved