login
A242885
Least number k such that (k^k+n^n)/(k+n) is an integer.
2
1, 2, 1, 4, 1, 3, 1, 2, 1, 5, 1, 4, 1, 14, 1, 16, 1, 3, 1, 5, 1, 10, 1, 3, 1, 6, 1, 4, 1, 4, 1, 18, 1, 17, 1, 9, 1, 26, 1, 10, 1, 6, 1, 20, 1, 7, 1, 6, 1, 8, 1, 12, 1, 10, 1, 8, 1, 3, 1, 3, 1, 6, 1, 29, 1, 6, 1, 6, 1, 5, 1, 6, 1, 17, 1, 19, 1, 12, 1, 20, 1, 5, 1, 12, 1, 42, 1
OFFSET
1,2
COMMENTS
If n is odd, a(n) = 1.
a(n) <= n for all n.
a(A242901(n)) = n and a(m) <> n for m < A242901(n). - Reinhard Zumkeller, May 25 2014
LINKS
EXAMPLE
(1^1+6^6)/(1+6) = 46657/7 is not an integer. (2^2+6^6)/(2+6) = 46660/8 = 11665/2 is not an integer. (3^3+6^6)/(3+6) = 46683/9 = 5187 is an integer. Thus a(6) = 3.
MATHEMATICA
lnk[n_]:=Module[{k=1, n2=n^n}, While[!IntegerQ[(k^k+n2)/(k+n)], k++]; k]; Array[lnk, 90] (* or, using the lnk function defined above *) Riffle[ Table[lnk[n], {n, 2, 100, 2}], 1, {1, -1, 2}] (* Harvey P. Dale, Dec 25 2018 *)
PROG
(PARI) a(n)=for(k=1, 2500, s=(k^k+n^n)/(k+n); if(floor(s)==s, return(k)))
n=1; while(n<100, print(a(n)); n+=1)
(Haskell)
a242885 n = head [k | let nn = n ^ n,
k <- [1..], mod (k ^ k + nn) (k + n) == 0]
-- Reinhard Zumkeller, May 25 2014
CROSSREFS
Sequence in context: A326721 A243792 A124331 * A181157 A095248 A122458
KEYWORD
nonn,look
AUTHOR
Derek Orr, May 25 2014
STATUS
approved