login
A242070
Decimal expansion of the supremum of all real s such that zeta'(s+i*t) = 0 for some real t.
2
2, 8, 1, 3, 0, 1, 4, 0, 2, 0, 2, 5, 2, 8, 9, 8, 3, 6, 7, 5, 2, 7, 2, 5, 5, 4, 0, 1, 2, 1, 6, 6, 8, 6, 9, 6, 3, 8, 4, 6, 1, 4, 0, 5, 6, 0, 5, 4, 0, 2, 6, 2, 2, 1, 5, 2, 6, 6, 4, 3, 8, 7, 4, 0, 4, 7, 1, 5, 0, 8, 3, 6, 8, 9, 2, 3, 7, 0, 7, 9, 9, 5, 8, 4, 0, 2, 0, 7, 1, 8, 2, 6, 3, 6, 9, 6, 0, 5, 4, 1
OFFSET
1,1
LINKS
FORMULA
The unique solution y > 1 of the equation zeta'(y)/zeta(y) = -2^(y + 1)*log(2)/(4^y - 1).
EXAMPLE
2.81301402025289836752725540121668696384614056054026221526643874...
MATHEMATICA
y /. FindRoot[Zeta'[y]/Zeta[y] == -2^(y + 1)*Log[2]/(4^y - 1), {y, 2}, WorkingPrecision -> 100] // RealDigits // First
CROSSREFS
Cf. A242069.
Sequence in context: A202539 A197287 A081882 * A155694 A200689 A143198
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved