login
A143198
Triangle read by rows T(n, k) = n + (n+1)*(k-1)*(k+2)/2.
2
-1, -1, 1, -1, 2, 8, -1, 3, 11, 23, -1, 4, 14, 29, 49, -1, 5, 17, 35, 59, 89, -1, 6, 20, 41, 69, 104, 146, -1, 7, 23, 47, 79, 119, 167, 223, -1, 8, 26, 53, 89, 134, 188, 251, 323, -1, 9, 29, 59, 99, 149, 209, 279, 359, 449, -1, 10, 32, 65, 109, 164, 230, 307, 395, 494, 604
OFFSET
0,5
FORMULA
T(n, k) = (n+1)*A000096(k-1) + n, for 0 <= k <= n, n >= 0.
Sum_{k=0..n} T(n, k) = (n-1)*(n+1)*(n^2+4*n+6)/6 (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = ((-1)^n*(2*n^3+6*n^2+5*n-3) -n-5)/8. - G. C. Greubel, Jun 09 2024
EXAMPLE
Triangle begins as:
-1;
-1, 1;
-1, 2, 8;
-1, 3, 11, 23;
-1, 4, 14, 29, 49;
-1, 5, 17, 35, 59, 89;
-1, 6, 20, 41, 69, 104, 146;
-1, 7, 23, 47, 79, 119, 167, 223;
-1, 8, 26, 53, 89, 134, 188, 251, 323;
-1, 9, 29, 59, 99, 149, 209, 279, 359, 449;
-1, 10, 32, 65, 109, 164, 230, 307, 395, 494, 604;
MAPLE
A143198 := proc(n, m)
n+(n+1)*(m-1)*(m+2)/2 ;
end proc:
seq(seq(A143198(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Nov 11 2011
MATHEMATICA
Table[n+(n+1)*(k-1)*(k+2)/2, {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Magma) [n+(n+1)*(k-1)*(k+2)/2: k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 09 2024
(SageMath) flatten([[n+(n+1)*(k-1)*(k+2)/2 for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 09 2024
CROSSREFS
Cf. A000096.
Sequence in context: A242070 A155694 A200689 * A100064 A153188 A352589
KEYWORD
easy,sign,tabl
AUTHOR
STATUS
approved