login
A242069
Decimal expansion of the supremum of all real s such that zeta(s+i*t) = 1 for some real t.
3
1, 9, 4, 0, 1, 0, 1, 6, 8, 3, 7, 4, 3, 6, 2, 5, 2, 8, 6, 0, 1, 7, 4, 6, 9, 3, 9, 0, 5, 2, 5, 5, 4, 8, 8, 7, 8, 2, 3, 0, 2, 4, 7, 6, 0, 7, 4, 4, 5, 7, 5, 8, 4, 5, 3, 6, 2, 8, 7, 0, 7, 6, 7, 3, 8, 9, 6, 6, 3, 5, 9, 6, 5, 7, 9, 2, 4, 8, 3, 2, 0, 8, 7, 3, 8, 7, 3, 5, 1, 2, 1, 8, 6, 8, 7, 2, 4, 5, 2, 0
OFFSET
1,2
LINKS
FORMULA
The unique solution x > 1 of the equation zeta(x) = (2^x + 1)/(2^x - 1).
EXAMPLE
1.9401016837436252860174693905255488782302476074457584536287...
MATHEMATICA
x /. FindRoot[Zeta[x] == (2^x + 1)/(2^x - 1), {x, 2}, WorkingPrecision -> 100] // RealDigits // First
CROSSREFS
Sequence in context: A038293 A119516 A193109 * A197828 A116393 A359285
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved