login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202539 Decimal expansion of the number x satisfying e^(2x)-e^(-x)=1. 2
2, 8, 1, 1, 9, 9, 5, 7, 4, 3, 2, 2, 9, 6, 1, 8, 4, 6, 5, 1, 2, 0, 5, 0, 7, 6, 4, 0, 6, 7, 8, 7, 8, 2, 9, 9, 7, 9, 2, 0, 2, 3, 2, 2, 5, 7, 4, 4, 0, 6, 6, 4, 6, 2, 6, 7, 5, 7, 3, 0, 3, 3, 4, 3, 1, 8, 0, 3, 8, 4, 5, 3, 0, 6, 2, 1, 2, 0, 8, 9, 1, 3, 2, 2, 9, 8, 7, 7, 0, 7, 4, 7, 5, 4, 9, 4, 0, 5, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A202537 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

Index entries for transcendental numbers

EXAMPLE

x=0.281199574322961846512050764067878299792023...

MATHEMATICA

u = 2; v = 1;

f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]

RealDigits[r]  (* A202539 *)

RealDigits[ Log[ Root[#^3 - # - 1&, 1]], 10, 99] // First (* Jean-Fran├žois Alcover, Feb 27 2013 *)

PROG

(PARI) log(polrootsreal(x^3-x-1)[1]) \\ Charles R Greathouse IV, May 15 2019

CROSSREFS

Cf. A202537.

Sequence in context: A200704 A257955 A024544 * A197287 A081882 A242070

Adjacent sequences:  A202536 A202537 A202538 * A202540 A202541 A202542

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 12:38 EST 2019. Contains 329114 sequences. (Running on oeis4.)