login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A241663
Number of positive integers k less than or equal to n such that gcd(k,n) = gcd(k+1,n) = gcd(k+2,n) = gcd(k+3,n) = 1.
5
1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 7, 0, 9, 0, 0, 0, 13, 0, 15, 0, 0, 0, 19, 0, 5, 0, 0, 0, 25, 0, 27, 0, 0, 0, 3, 0, 33, 0, 0, 0, 37, 0, 39, 0, 0, 0, 43, 0, 21, 0, 0, 0, 49, 0, 7, 0, 0, 0, 55, 0, 57, 0, 0, 0, 9, 0, 63, 0, 0, 0, 67, 0, 69, 0, 0, 0, 21, 0, 75, 0, 0
OFFSET
1,7
COMMENTS
a(n) is the 4th Schemmel totient function.
LINKS
Colin Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015), Article 15.2.1
Nittiya Pabhapote and Vichian Laohakosol, Combinatorial Aspects of the Generalized Euler's Totient, International Journal of Mathematics and Mathematical Sciences, Volume 2010 (2010), Article ID 648165, 15 p.
FORMULA
Multiplicative with a(p^e) = p^(e-1)*(p-4) for p > 3. a(2^e) = a(3^e) = 0 for e > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/6) * Product_{p prime >= 5} (1 - 4/p^2) = 0.11357982182683545733... . - Amiram Eldar, Oct 13 2022
EXAMPLE
a(35) = a(5)*a(7) = 1*3 = 3.
MATHEMATICA
Table[Boole[n == 1] + Count[Partition[Range@ n, 4, 1], _?(AllTrue[#, CoprimeQ[n, #] &] &)], {n, 81}] (* or *)
Array[If[# == 1, 1, Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 1 :> If[p > 3, (p - 4) p^(e - 1), 0]]] &, 81] (* Michael De Vlieger, Nov 05 2017 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4))); } \\ Michel Marcus, May 01 2014
(Scheme)
;; After the given multiplicative formula. Uses memoization-macro definec:
(definec (A241663 n) (if (= 1 n) n (let ((p (A020639 n))) (if (<= p 3) 0 (* (- p 4) (expt p (- (A067029 n) 1)) (A241663 (A028234 n))))))) ;; Antti Karttunen, Nov 05 2017
CROSSREFS
Sequence in context: A160086 A115869 A115859 * A344976 A344876 A129170
KEYWORD
nonn,mult
AUTHOR
Colin Defant, Apr 26 2014
STATUS
approved