login
A241664
Number of iterations of A058026 needed to reach either 0 or 1.
1
0, 1, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, 1, 2, 1, 3, 1, 4, 1, 3, 1, 4, 1, 3, 1, 3, 1, 4, 1, 5, 1, 3, 1, 3, 1, 4, 1, 4, 1, 5, 1, 6, 1, 3, 1, 4, 1, 4, 1, 3, 1, 4, 1, 4, 1, 4, 1, 5, 1, 6, 1, 3, 1, 4, 1, 5, 1, 4, 1, 5, 1, 6, 1, 3, 1, 4, 1, 5, 1, 4, 1, 5, 1, 4, 1, 4
OFFSET
1,5
COMMENTS
I conjecture that, for n>3 and n odd, we have a(n)>=log((49/15)n)/log(7).
EXAMPLE
A058026(7)=5, A058026(5)=3, A058026(3)=1. As it takes 3 iterations to reach 1, a(7)=3.
PROG
The link above provides a Python program. Enter m=2 as well as starting and ending values of n. The third string of numbers will be this sequence.
(Haskell)
a241664 n = fst $ until ((<= 1) . snd)
(\(u, v) -> (u + 1, a058026 v)) (0, n)
-- Reinhard Zumkeller, May 10 2014
CROSSREFS
Sequence in context: A309978 A108103 A111376 * A157226 A156249 A187808
KEYWORD
nonn,look
AUTHOR
Colin Defant, Apr 26 2014
EXTENSIONS
a(1) corrected by Reinhard Zumkeller, May 10 2014
STATUS
approved