login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240572
a(n) = floor(4^n/(2 + sqrt(2))^n).
11
1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 9, 10, 12, 14, 17, 20, 23, 27, 32, 38, 44, 52, 61, 71, 84, 98, 115, 135, 158, 185, 217, 255, 299, 350, 410, 480, 563, 659, 773, 905, 1061, 1243, 1456, 1706, 1999, 2342, 2744, 3215, 3767, 4413, 5170, 6057, 7097, 8314
OFFSET
0,6
COMMENTS
a(n) is the perimeter (rounded down) of octaflake after n iterations, let a(0) = 1. The total number of sides is 8*A000302(n). The total number of holes is A084990(A000225(n)). sqrt(2) = A002193.
LINKS
MAPLE
A240572:=n->floor(4^n/(2 + sqrt(2))^n); seq(A240572(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Table[Floor[4^n/(2 + Sqrt[2])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
PROG
(PARI) {a(n)=floor(4^n/(2 + sqrt(2))^n)}
for (n=0, 100, print1(a(n), ", "))
CROSSREFS
Cf. A000302, A084990, A000225, A002193. A240523 (pentaflake), A240671 (heptaflake), A240733 (nonaflake), A240734 (decaflake), A230735 (dodecaflake).
Sequence in context: A238208 A350892 A029028 * A029072 A279766 A029027
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Apr 08 2014
STATUS
approved