|
|
A240523
|
|
a(n) = floor(4^n/((1+sqrt(5))/2)^(2*n)).
|
|
13
|
|
|
1, 1, 2, 3, 5, 8, 12, 19, 29, 45, 69, 105, 161, 247, 377, 577, 881, 1347, 2058, 3144, 4805, 7341, 11216, 17137, 26183, 40005, 61122, 93387, 142682, 218000, 333074, 508892, 777518, 1187942, 1815014, 2773095, 4236913
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the perimeter (rounded down) of pentaflake after n iterations, let a(0) = 1. The total number of sides is 5*A000302(n).
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Kival Ngaokrajang, Illustration for n = 0..4
Eric Weisstein's World of Mathematics, Pentaflake
Wikipedia, n-flake
|
|
FORMULA
|
Equals floor((2/(phi))^(2*n)), where phi is the golden ratio. - G. C. Greubel, Jul 05 2017
|
|
MAPLE
|
A240523:=n->floor(4^n/((1+sqrt(5))/2)^(2*n)); seq(A240523(n), n=0..50); # Wesley Ivan Hurt, Apr 07 2014
|
|
MATHEMATICA
|
Table[Floor[4^n/(((1 + Sqrt[5]))/2)^(2 n)], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 07 2014 *)
Table[Floor[4^n/GoldenRatio^(2n)], {n, 0, 40}] (* Harvey P. Dale, Mar 24 2018 *)
|
|
PROG
|
(PARI) a(n) = floor(4^n/((1+sqrt(5))/2)^(2*n))
|
|
CROSSREFS
|
Cf. A000302, A000400, A113212.
Sequence in context: A124062 A274199 A099823 * A023436 A024567 A303668
Adjacent sequences: A240520 A240521 A240522 * A240524 A240525 A240526
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Kival Ngaokrajang, Apr 07 2014
|
|
STATUS
|
approved
|
|
|
|