login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240523 a(n) = floor(4^n/((1+sqrt(5))/2)^(2*n)). 13
1, 1, 2, 3, 5, 8, 12, 19, 29, 45, 69, 105, 161, 247, 377, 577, 881, 1347, 2058, 3144, 4805, 7341, 11216, 17137, 26183, 40005, 61122, 93387, 142682, 218000, 333074, 508892, 777518, 1187942, 1815014, 2773095, 4236913 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the perimeter (rounded down) of pentaflake after n iterations, let a(0) = 1. The total number of sides is 5*A000302(n).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Kival Ngaokrajang, Illustration for n = 0..4

Eric Weisstein's World of Mathematics, Pentaflake

Wikipedia, n-flake

FORMULA

Equals floor((2/(phi))^(2*n)), where phi is the golden ratio. - G. C. Greubel, Jul 05 2017

MAPLE

A240523:=n->floor(4^n/((1+sqrt(5))/2)^(2*n)); seq(A240523(n), n=0..50); # Wesley Ivan Hurt, Apr 07 2014

MATHEMATICA

Table[Floor[4^n/(((1 + Sqrt[5]))/2)^(2 n)], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 07 2014 *)

Table[Floor[4^n/GoldenRatio^(2n)], {n, 0, 40}] (* Harvey P. Dale, Mar 24 2018 *)

PROG

(PARI) a(n) = floor(4^n/((1+sqrt(5))/2)^(2*n))

CROSSREFS

Cf. A000302, A000400, A113212.

Sequence in context: A124062 A274199 A099823 * A023436 A024567 A303668

Adjacent sequences:  A240520 A240521 A240522 * A240524 A240525 A240526

KEYWORD

nonn,easy

AUTHOR

Kival Ngaokrajang, Apr 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 08:15 EST 2019. Contains 329841 sequences. (Running on oeis4.)