OFFSET
1,3
COMMENTS
For the positive sequence, see A240557, which is this sequence plus 1. Is there a simple way of determining this sequence, as in the case of the no 3-term arithmetic progression?
EXAMPLE
After (0, 1, 2, 3, 5, 7), the number 10 is excluded since else the subsequence (0, 2, 3, 5, 10) would have successive 1st, 2nd and 3rd differences (2, 1, 2, 5), (-1, 1, 3) and (2, 2), which is constant and thus excluded.
MATHEMATICA
t = {0, 1, 2, 3}; Do[s = Table[Append[i, n], {i, Subsets[t, {4}]}]; If[! MemberQ[Flatten[Table[Differences[i, 4], {i, s}]], 0], AppendTo[t, n]], {n, 4, 5000}]; t
PROG
(PARI) A240556(n, show=0, L=5, o=3, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v<n, show&&print1(v[#v]", "); v=concat(v, v[#v]); while( v[#v]++, forvec( i=vector(L, j, [if(j<L, j, #v), #v]), d=D(vecextract(v, i)); m=o; while(m--&&#Set(d=D(d))>1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 09 2014
STATUS
approved