login
A238498
Triangle read by rows: T(n,k) = A175836(n)/(A175836(k)* A175836(n-k)).
4
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 6, 12, 12, 6, 1, 1, 12, 24, 36, 24, 12, 1, 1, 8, 32, 48, 48, 32, 8, 1, 1, 12, 32, 96, 96, 96, 32, 12, 1, 1, 12, 48, 96, 192, 192, 96, 48, 12, 1, 1, 18, 72, 216, 288, 576, 288, 216, 72, 18, 1, 1, 12, 72, 216, 432, 576, 576, 432, 216, 72, 12, 1
OFFSET
0,5
COMMENTS
We assume that A175836(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Dedekind psi function A001615.
Another name might be the psi-nomial coefficients.
LINKS
Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
FORMULA
T(n,k) = A175836(n)/(A175836(k)*A175836(n-k)).
T(n,k) = prod_{i=1..n} A001615(i)/(prod_{i=1..k} A001615(i)*prod_{i=1..n-k} A001615(i)).
T(n,k) = A001615(n)/n*(k/A001615(k)*T(n-1,k-1)+(n-k)/A001615(n-k)*T(n-1,k)).
T(n,k) = A238688(n,k)/A238453(n,k).
EXAMPLE
The first five terms in the Dedekind psi function are 1,3,4,6,6 and so T(4,2) = 6*4*3*1/((3*1)*(3*1))=8 and T(5,3) = 6*6*4*3*1/((4*3*1)*(3*1))=12.
The triangle begins
1
1 1
1 3 1
1 4 4 1
1 6 8 6 1
1 6 12 12 6 1
MAPLE
A175836 := proc(n) option remember; local p;
`if`(n<2, 1, n*mul(1+1/p, p=factorset(n))*A175836(n-1)) end:
A238498 := (n, k) -> A175836(n)/(A175836(k)*A175836(n-k)):
seq(seq(A238498(n, k), k=0..n), n=0..10); # Peter Luschny, Feb 28 2014
MATHEMATICA
DedekindPsi[n_] := Sum[MoebiusMu[n/d] d^2 , {d, Divisors[n]}]/EulerPhi[n];
(* b = A175836 *) b[n_] := Times @@ DedekindPsi /@ Range[n];
T[n_, k_] := b[n]/(b[k] b[n-k]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jul 02 2019 *)
PROG
(Sage)
q=100 #change q for more rows
P=[0]+[i*prod([(1+1/x) for x in prime_divisors(i)]) for i in [1..q]]
[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
(Haskell)
a238498 n k = a238498_tabl !! n !! k
a238498_row n = a238498_tabl !! n
a238498_tabl = [1] : f [1] a001615_list where
f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
where ys = y : xs; y = head xs * z
-- Reinhard Zumkeller, Mar 01 2014
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Feb 27 2014
STATUS
approved