The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238501 Primes p for which x! + (p-1)!/x!==0 (mod p) has only three solutions 1<=x<=p-2. 0
 7, 11, 19, 31, 43, 47, 107, 127, 131, 151, 163, 167, 179, 191, 211, 223, 263, 283, 347, 367, 443, 487, 491, 523, 547, 587, 643, 659, 751, 827, 839, 911, 1039, 1051, 1087, 1103, 1123, 1163, 1171, 1223, 1259, 1283, 1291, 1327, 1427, 1439, 1447, 1487, 1523, 1543 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are of the form 4*k+3. Using Wilson's theorem, for every p>3, p==3(mod 4) we have, at least, 3 solutions in [1,p-2] of x! + (p-1)!/x!==0 (mod p): x = 1, x = (p-1)/2, x = p-2. LINKS FORMULA a(n) is prime(k(n)) for which A238444(k(n)) = 3. MATHEMATICA kmax = 400; Select[Select[4*Range[kmax]+3, PrimeQ], (r = Range[#-2]; Count[r!+(#-1)!/r!, k_ /; Divisible[k, #]] == 3)&] (* Jean-François Alcover, Mar 05 2014 *) CROSSREFS Cf. A238444, A238460. Sequence in context: A053403 A032672 A235806 * A133425 A103802 A038984 Adjacent sequences:  A238498 A238499 A238500 * A238502 A238503 A238504 KEYWORD nonn AUTHOR Vladimir Shevelev, Feb 27 2014 EXTENSIONS More terms from Peter J. C. Moses, Feb 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 10:50 EST 2020. Contains 331171 sequences. (Running on oeis4.)