login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234618
Numbers of undirected cycles in the n-crown graph.
1
1, 28, 586, 16676, 674171, 36729512, 2591431284, 229610080632, 24945009633237, 3259554588092452, 504229440385599358, 91120169013941688700, 19019291896651737256463, 4540685283391286195445008, 1229402290052883559000280168, 374675876836087520170128786864
OFFSET
3,2
LINKS
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Graph Cycle
FORMULA
a(n) = Sum_{k=2..n} binomial(n,k) * ( (-1)^k*(k-1)! + Sum_{j=0..k} Sum_{i=0..k-1} (-1)^i*i!*(k-i)!*(k-i-1)!*binomial(k,k-j)*binomial(n-k,j)*binomial(k-j,i)*binomial(2*k-i-1,i)/2 ). - Andrew Howroyd, Feb 24 2016
Recurrence: (n-3)*(180*n^5 - 3462*n^4 + 25685*n^3 - 91106*n^2 + 152414*n - 93847)*a(n) = (360*n^8 - 8904*n^7 + 93172*n^6 - 538135*n^5 + 1875502*n^4 - 4041070*n^3 + 5268157*n^2 - 3817934*n + 1189124)*a(n-1) - (n-1)*(180*n^9 - 5262*n^8 + 67445*n^7 - 497202*n^6 + 2321291*n^5 - 7107149*n^4 + 14233985*n^3 - 17904305*n^2 + 12741400*n - 3858611)*a(n-2) - (n-2)*(n-1)*(180*n^9 - 5442*n^8 + 71807*n^7 - 543239*n^6 + 2598146*n^5 - 8144697*n^4 + 16705322*n^3 - 21515171*n^2 + 15619923*n - 4754598)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*(540*n^7 - 12585*n^6 + 122039*n^5 - 636205*n^4 + 1920840*n^3 - 3360924*n^2 + 3186108*n - 1302080)*a(n-4) + 2*(n-4)*(n-3)*(n-2)*(n-1)*(540*n^7 - 13806*n^6 + 145494*n^5 - 814365*n^4 + 2591726*n^3 - 4628556*n^2 + 4207415*n - 1449736)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(1440*n^6 - 28956*n^5 + 230284*n^4 - 915485*n^3 + 1878786*n^2 - 1811640*n + 577483)*a(n-6) + 3*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(180*n^5 - 2562*n^4 + 13637*n^3 - 33023*n^2 + 34309*n - 10136)*a(n-7). - Vaclav Kotesovec, Feb 25 2016
a(n) ~ Pi * BesselI(0,2) * n^(2*n) / exp(2*n+2). - Vaclav Kotesovec, Feb 25 2016
MATHEMATICA
a[n_] := Sum[Binomial[n, k]*((-1)^k*(k - 1)! + Sum[Sum[(-1)^i*i!*(k - i)!*(k - i - 1)!*Binomial[k, k - j]*Binomial[n - k, j]*Binomial[k - j, i]*Binomial[2*k - i - 1, i]/2, {i, 0, k - 1}], {j, 0, k}]), {k, 2, n}];
Table[a[n], {n, 3, 18}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
RecurrenceTable[{(n - 3) (180 n^5 - 3462 n^4 + 25685 n^3 - 91106 n^2 + 152414 n - 93847) a[n] == (360 n^8 - 8904 n^7 + 93172 n^6 - 538135 n^5 + 1875502 n^4 - 4041070 n^3 + 5268157 n^2 - 3817934 n + 1189124) a[n - 1] - (n - 1) (180 n^9 - 5262 n^8 + 67445 n^7 - 497202 n^6 + 2321291 n^5 - 7107149 n^4 + 14233985 n^3 - 17904305 n^2 + 12741400 n - 3858611) a[n - 2] - (n - 2) (n - 1) (180 n^9 - 5442 n^8 + 71807 n^7 - 543239 n^6 + 2598146 n^5 - 8144697 n^4 + 16705322 n^3 - 21515171 n^2 + 15619923 n - 4754598) a[n - 3] + 2 (n - 3) (n - 2) (n - 1) (540 n^7 - 12585 n^6 + 122039 n^5 - 636205 n^4 + 1920840 n^3 - 3360924 n^2 + 3186108 n - 1302080) a[n - 4] + 2 (n - 4) (n - 3) (n - 2) (n - 1) (540 n^7 - 13806 n^6 + 145494 n^5 - 814365 n^4 + 2591726 n^3 - 4628556 n^2 + 4207415 n - 1449736) a[n - 5] - (n - 5) (n - 4) (n - 3) (n - 2) (n - 1) (1440 n^6 - 28956 n^5 + 230284 n^4 - 915485 n^3 + 1878786 n^2 - 1811640 n + 577483) a[n - 6] + 3 (n - 6) (n - 5) (n - 4) (n - 3) (n - 2) (n - 1) (180 n^5 - 2562 n^4 + 13637 n^3 - 33023 n^2 + 34309 n - 10136) a[n - 7], a[3] == 1, a[4] == 28, a[5] == 586, a[6] == 16676, a[7] == 674171, a[8] == 36729512, a[9] == 2591431284}, a, {n, 3, 20}] (* Eric W. Weisstein, Oct 02 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 28 2013
EXTENSIONS
a(13) from Eric W. Weisstein, Jan 08 2014
a(14) from Eric W. Weisstein, Apr 09 2014
a(15)-a(16) from Andrew Howroyd, Feb 24 2016
STATUS
approved