This site is supported by donations to The OEIS Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094047 Number of seating arrangements of n couples around a round table (up to rotations) so that each person sits between two people of the opposite sex and no couple is seated together. 18
0, 0, 2, 12, 312, 9600, 416880, 23879520, 1749363840, 159591720960, 17747520940800, 2363738855385600, 371511874881100800, 68045361697964851200, 14367543450324474009600, 3464541314885011705344000 (list; graph; refs; listen; history; text; internal format)



Also, the number of Hamiltonian directed circuits in the crown graph of order n.

Or the number of those 3 X n Latin rectangles (cf. A000186) the second row of which is a full cycle. - Vladimir Shevelev, Mar 22 2010


V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr.Mat.(J. of the Akademy of Sciences of Russia) 4(1992),91-110.


Table of n, a(n) for n=1..16.

M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:10.1007/978-3-319-44543-4_12 arXiv:1510.07926

H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff. [Annotated scanned copy]

Eric Weisstein's World of Mathematics, Crown Graph

Eric Weisstein's World of Mathematics, Hamiltonian Cycle


For n>1, a(n) = (-1)^n * 2 * (n-1)! + n! * SUM[j=0..n-1] (-1)^j * (n-j-1)! * binomial(2*n-j-1,j). - Max Alekseyev, Feb 10 2008

a(n) = A059375(n) / (2*n) = A000179(n) * (n-1)!.

Conjecture: a(n) +(-n^2+2*n-3)*a(n-1) -(n-2)*(n^2-3*n+5)*a(n-2) -3*(n-2)*(n-3)*a(n-3) +(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 02 2015

Conjecture: (-n+2)*a(n) +(n-1)*(n^2-3*n+3)*a(n-1) +(n-2)*(n-1)*(n^2-3*n+3)*a(n-2) +(n-2)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Nov 02 2015


A094047 := proc(n)

    if n < 3 then



        (-1)^n*2*(n-1)!+n!*add( (-1)^j*(n-j-1)!*binomial(2*n-j-1, j), j=0..n-1) ;

    end if;

end proc: # R. J. Mathar, Nov 02 2015


Join[{0}, Table[(-1)^n 2(n-1)!+n!Sum[(-1)^j (n-j-1)!Binomial[2n-j-1, j], {j, 0, n-1}], {n, 2, 20}]] (* Harvey P. Dale, Mar 07 2012 *)


Cf. A059375 (rotations are counted as different)

Cf. A114939, A137729.

Sequence in context: A012422 A122767 A260321 * A300045 A091472 A156518

Adjacent sequences:  A094044 A094045 A094046 * A094048 A094049 A094050




Matthijs Coster, Apr 29 2004


Better definition from Joel B. Lewis, Jun 30 2007

Formula and further terms from Max Alekseyev, Feb 10 2008



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 12:08 EST 2019. Contains 319306 sequences. (Running on oeis4.)